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A general single-particle formalism is developed that is applicable for describing thermal and 
nonlinear effects both in the wiggler-free free-electron laser (WFFEL) and in the 
cyclotron autoresonance maser (CARM). The general formalism is used in the present paper 
for a linear analysis. The WFFEL interaction is shown to result from the coupling of 
the electromagnetic wave to two slow waves: a left-hand polarized wave and a longitudinal 
wave. This coupling results from the spatial periodicity of the electron flow in the 
WFFEL which follows the gyrophase coherence of the beam. The comparison between the 
WFFEL and the CARM is extended to the case where the wave phase velocity is 
different from the velocity of light in vacuum, and conditions are found for the gain in the 
WFFEL to be larger. An exact dispersion relation is derived for the WFFEL which 
employs an electron beam with thermal spread in the transverse velocity. 

I. INTRODUCTION AND SUMMARY 

In the wiggler-free free-electron laser (WFFEL)lA a 
spatially periodic flow of electrons progates along a uni- 
form magnetic field and transfers energy to an electromag- 
netic wave. The mechanism of the energy transfer relies 
upon a coupling of the electromagnetic wave to slow waves 
through the periodicity of the flow, similarly to the cou- 
pling in the free-electron laser’ (FEL), where both the 
flow and the external magnetic field are spatially periodic. 
The spatial periodicity in the WFFEL follows the gy- 
rophase coherence of the beam. The coupling to the slow 
waves does not exist in the gyrotron6 or in the cyclotron 
autoresonance maser ( CARM)7-9 where the electron beam 
is randomly gyrophased and the flow is not periodic. The 
possible gain enhancement by the periodicity of the elec- 
tron flow as a result of the gyrophase coherence of the 
beam was addressed also in relation to other physical 
systems.‘0-12 

In this paper we progress toward an understanding of 
three-dimensional, thermal, and nonlinear effects. In pre- 
vious papers we used fluidlr3 and kinetic2’4 pictures to de- 
scribe the electron beam dynamics. Here we derive a gen- 
eral single-particle model, which is applicable for 
describing the nonlinear evolution of the electromagnetic 
radiation, as well as the effects of thermal spread and finite 
transverse system dimensions. 

After laying out the general formalism in Sec. II, we 
turn in Sec. III to a linear analysis of the interaction of a 
cold beam and derive the full dispersion relation. In Sec. 
IV we show that the physical mechanism responsible for 
the WFFEL interaction relies upon coupling of the right- 
hand polarized electromagnetic wave to two slow waves: a 
left-hand polarized slow wave and a longitudinal slow 
wave. The contribution of the two slow waves is usually 
comparable. As in our previous paper4 we reduce the gen- 
eral dispersion relation to a fifth-order polynomial. At res- 
onance four roots are nonreal, and correspondingly there 
are two unstable growing modes. The growth rate of the 
most unstable mode approximately is [Eq. (44)] 

Im k,= - 
sin;2:) [f+ (,)r]“’ 

3/s 

x [&c2-2( l-3 (3&&q5. 

Here wP is the beam plasma frequency, R is the nonrela- 
tivistic cyclotron frequency, ut and v, are the perpendicular 
and parallel components of the electron velocity, y is the 
relativistic factor ( I- v2/c2) - 1’2, and k, is the longitudinal 
component of the wave vector. The Fourier coefficients in 
the azimuthal gyrophase of the electron initial distribution 
functions g,, and g,, couple the right-hand polarized 
electromagnetic wave to a slow longitudinal wave and to a 
slow left-hand polarized electromagnetic wave. The term 
in the square brackets is usually of order one. The two 
terms in these brackets express the contributions of the 
couplings to the two slow waves. The relative roles of these 
two slow waves can vary according to the relative magni- 
tudes of these two terms. 

The gain in the CARM, when the transverse wave 
vector k, is not too small, is [Eq. (33)] 

~3 u2v2k2c “3 
Im k,= -- Pt 1 

2 4c2yv,2w ) ( 1 

where w is the wave frequency. When k, is small, the gain 
in the CARM is approximately [Eq. (35)] 

Imk,=- wp ” -&G* 
We show that in some cases of practical interest the gain in 
the WFFEL is significantly larger than the gain in the 
CARM. We show, however, that at grazing incidence the 
gyrophase coherence of the electron beam does not en- 
hance the amplification. 

When the density is high enough, and if the electron 
transverse velocity is very small, the gain in the WFFEL 
becomes [Eq. (5Ob)] 
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The gain scales as in the FEL in the strong-pump regime 
where k,zC?dyr~~ is equivalent to k,, the wiggler wave 
number. We discuss the reason for this similarity. We note, 
however, that numerically it is usually difficult to distin- 
guish between the two limits (48) and (54b). 

In Sec. V we derive an exact dispersion relation for the 
W7FFEL with a thermal spread in the transverse velocity. 
We also write the equations for the nonlinear analysis of an 
initially cold electron beam. This forms the basis for a 
future study of the crucial questions of the effects of ther- 
mal spread and nonlinearity on the interaction. We empha- 
size that generating the coherently gyrophased beam 
needed for the WFFEL without an accompanying large 
thermal spread has not yet been demonstrated. 

In Sec. VI a numerical example is given. 

II. A GENERAL NONLINEAR FORMALISM 

We consider an electron beam which propagates along 
the a direction in the presence of both time-dependent and 
time-independent fields. At this stage we make the assump- 
tion that the electrons move mainly in the z direction and 
that their transverse excursion is small; therefore their 
transverse coordinates are assumed constant during their 
motion. Foilowing Sprangle e~al.,‘” we write the general 
thermal distribution function f as 

-$ZCti,r,3PiJ) l~[~-P~fiJ~~Pj,~~ It (1) 
where ti is the time the particle passes through z=O, r’ is 
the transverse coordinate of the particle at t2ti and pi is its 
momentum at t= t* The z coordinate of the particle is 5 
and its momentum is p. The distribution function of the 
particles at z=O is f. The charge density p and the current 
density J, associated with this distribution function, are 

ws tt-ti-T(tiJi,P$)l i \ I v,(Lww) ) ’ 
and 

J(roG) = -e S hi UPi) SC, ~tif(~i,r~,pi) 

(2) 

PttiJ,7PiJI 
’ IPAtiJhPiJ) [ 

6[t-ti-T(tj,rL,Pj,Z)], (31 

Here -e is the electron charge. The time T is the time it 
takes for an electron to move from the entrance to the 
point z, 

We also define the flow velocity (v) (r,t) = J/i7. We now 
make the assumption13 that both the waves and the cur- 
rents are periodic in time with frequency w corresponding 
to a temporal steady state, Multiplying the Maxwell equa- 
tions by e”?“, and integrating over 2?r/r0, we obtain 

a& a& .@ 4n. 
z---g+1 ; az=c.zz, i%l 

v-a =4-G-p, (5c) 

and 

;fi+= aa a 
f -=$iay aZTzartI ( 1 

where CY, /3, j, and p are the wave electric field, the wave 
magnetic field, the current density, and the charge density, 
which are obtained by multiplying by exp(iwt) and by 
averaging over a period 2?r/w. Also (v) (r) zj/p. Here 
a, =a,Tir+, p* ~fl.~Ti4y, j, =jX’i& Using expressions 
(2)-(4) for the charge and current densities, we obtain the 
following expressions for j and p: 

P[t,P,r,r(t,Pj,rl,z) 1 
X 

pz(ti9PiJhT) f CtivPiJl), (ha) 

and 

X [Uz(ti,PiJ~,r)] --‘. (6b) 

Here 22, and pz were assumed to be always positive. As 
explained in Ref. 13 the periodicity of the currents allows 
us to integrate on ti over a finite interval of length 2ns/w 
only. 

In order to calculate the expressions (6a) and (6b) for 
j and p, we have to solve the single-particle equations of 
motion for the particles momentum p and velocity v, at z 
and average their contributions over ti and pp We now 
specify the time-independent fields to be a uniform mag- 
netic field I%,=&&. The equations of motion are for slowly 
changing variables, as used, for example, by Fliflet,” 

i7) 

where pr and C#J are the slowly varying amplitude and phase. 
The nonrelativistic cyclotron frequency is Cl = e&,/mc 
where m is the electron mass. The single-particle equations 
of motion are’ 

dpt x==Re(S,)=Re i(F,-iF,,)exp I F. T++ 
i 

[ ‘(” )]I, (84 
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d+ z=Re(S4) j,= -5 Jo'"" dti [ dpri27TPti ["df$j Vz, 

(8b) 

4, 
x=Re(S,) =Re(FJ, iW 

de 
z=Re(S,) =Re( --v-E), i8d) 

v = c2p/c, (8e) 

where E is the total electron energy, y- ( 1 +pp/m2c2) “‘, 
and F= -e[E+ (v/c) XB]. We now assume that the fun- 
damental time harmonic is dominant and neglect the 
higher harmonics in the equations of motion. For nota- 
tional convenience we omitted the subscript 1 from the 
wave-field coefficients. The expressions for the sources be- 
come 

St= - ieexp(2-iu’) ((a+-iT/?+)exp[i(ET++)] 

--(n_+izfl-)exp[ -i(ET+$)]/, (94 

S,=-iTexp(-icdt)(a+ exp[i(ET+gS)] 

Using (7), we write the current density as 

j,=kies ~~2~‘WdfiS0mdp~ia?ipd~~~dp=, 
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(9b) 

(9c) 

(9d) 

( l.Oa ) 

Xf( fi@*i,P&iJl) exp [ if3 tti+ 7) 19 (lob) 

and the charge density as 

Xf(ti,Pti,p,it~itr*)eXP[iW(ti+T) 1 (&)-l. i 1Oc) 
Maxwell’s equations (5) and the equations of motion (8) 
together with the definitions (10) fully describe the elec- 
tron beam-wave interaction in very general cases. They 
comprise the basis for a future study of nonlinear pro- 
cesses, the influence of thermal spread, and three- 
dimensional effects. 

In Eqs. ( 10) pr prt 4, and v, are calculated at a time 
t = ti+ r, which is the time the particle reaches the coordi- 
nate z along its propagation. We assume that the particle 
velocity v, is always positive and therefore, for each parti- 
cle, r is a single-valued function of z. The equations of 
motion (8) and the Maxwell equations (5) also describe 
the CARM interaction. Contrary to what is usually done 
in the CARM analysis we have retained the left-hand po- 
larized components a- and P- ‘and the longitudinal field 
a,. These fields will shortly be shown to play a major role 
in the WFFEL interaction. 

Having presented the general formalism, we derive, in 
the next section, the dispersion relation of the linearized 
equations. 

Ill. DERIVATION OF THE FULL DISPERSION 
RELATION OF THE LINEARIZED EQUATIONS 

We first reduce the problem to a one-dimensional ( l- 
D) problem by assuming that the transverse dependence of 
the wave fields and of the beam dynamics is weak. On the 
left-hand side of Eq. ( 1 la) the operator V: becomes -k:. 
Retaining this term, we are able to study the CARM in- 
teraction when the phase velocity is different from c. More- 
over, in our simplified model, this term is the only 
transverse-dependent term retained. We neglect the second 
term on the left-hand side of Eq. (5a) since this term 
represents the transverse derivative of V-a, and V-a is pro- 
portional to the beam density, which is assumed to be low. 
Similarly, we neglect the transverse derivatives in Eqs. 
(5b) and (5d). The 1-D Maxwell equations are now 

d2 co2 
-kf+;iT+F 

47753 
a*(z) = -Fj+ (z), (lla) 

477 
i: a,(z) =y L(z), (lib) 

and 

w 
;,,=,g*. 

(llc) 

(lid) 
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The transverse dependence appears in our simplified anal- 
ysis only in the term kf in Eq. ( 1 la). 

The electron distribution function f is assumed to be 
independent of ri. The 1-D Maxwell equations enable us to 
study the nonlinear wave-beam interaction with an arbi- 
trary electron distribution function at z=O. This can be 
done by solving the full nonlinear single-particle equations, 
as was done, for example, in Ref. 13 for the FEL, or by 
employing a quasilinear approach within a fluid picture.‘” 
We postpone the nonlinear analysis for the future and turn 
to a linear analysis. 

The current and charge densities, linearized to first 
order in the wave fields’ amplitudes, are 

j*,,=xtg J~r’mdtiJom dPrl2TPtj 

X J”, dpti J: d#t L’z&tt,Pi> 

XgeXp[ Fi(~~o+~j)+j~(ti+~o)] 

(124 

X d+i v,rf(ti~pi)exp[i~(ti+~oO)]i~~~ 2 (12b) 

and St,=-: [ (a,-j:b+)& 

J- 

2s 
X 

0 
d~if(ri,pi)exp[iw(ti+70)] (farI-$)- 

I12c) 

To zeroth order, in the presence of the uniform magnetic 
field only, the quantities pn pp 4, and E are constant and 
have the same values they had at z=O. The time r. is z/v, 
Despite the approximations we could still allow a general 
distribution function f and study thermal spread effects. 
Indeed, we address thermal spread effects in Sec. V. Here 
we limit ourselves to an initial distribution function which 
is cold and steady (does not depend on ti). The electron 
distribution function is 

f(fi,Pti3Pd4i) =No “F.&“) S(P,i-pfi)g(4i), (13) 
N 

As in our kinetic analysis,’ we write 

g(4i) =& j gilei”‘r7 
n- 1)3 

(14) 

and gn=gvn are real, so that g(r$!) is real. The zeroth- 
order current and charge densities are 

po=---eSdpiJ‘“x 4f~(t-t~--~)=-elVo, (15a) 

j=ko= *ieNovx, exp( rik$)g* I, (15b) 

j,, = - eiV,u, , c 15c) 

W0=Wp0, ! 15d) 

where vo=p,y’myo, y& 1+ (pi+pL)/m2c2, and 

k,,=W(youB). (16) 

We look for a solution for the fields CC(Z) and p(z) of the 
form 

a+(z) =a+ exp(ikz), ( 17a) 

a-(z)=a- exp[i(kZ+2ko)z], (17b) 

aZ(z)=a,exp[i(k,fko)z], (17c) 

P+(z) =b+ exp(ikg), (17d) 

/3-(z) =b- exp[i(kZ+2k&]. C 17e) 

We substitute these expressions for the fields into the 
sources in the single-particle equations (8). The time t is 
t=tjfnsti+z/oZi. The linearized sources in the single- 
particle equations are, therefore, 

SQI=& [ (a+--iTb+)d+i 

.Szl== 2 (b+eid+b-c-‘#i) ---a= ee-I’*, (18~) 

scl=- 2 (a+ei+i-a-e-i4~) +vlp,)eeiy, (18d) 

where 

Expressing the linearized time derivative as 
d/dt = Uzi(d/dz), we solve the linearized single-particle 
equations of motion and find that 

Ca+e’@~-a-e-‘~i) -iLlzpz 
)I 

, (20a) 
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pt,=Re[ -$ [ (a+-i:b+)e@i 

-(u-+iFb-)e-‘6i]], 

(u+eDi--a....e-‘~i) -iup, 
11 

, 

z(b +e@i+b-e-h) -a )I z 9 

PA 61 
V~l=--V~i--, 

Vi Ei 

and 

s 

= dz’ vZl (z’) 
71= - 2 

0 v.7i 

=-Re(s (2 [ (ib+-:u+)e% 

+ (ib- +$um)eeYi] -i( 1 -$)uZ]), 

where 

We now perform the integrations over ti, pt;. pzi, and 6, 
in Eqs. ( 12), using expressions (20) for the linearized vari- 
ables, and the form ( 13) of the initial distribution function. 
The perturbed charge density is 

x [$ (~+z+g-, 

40 
( 

(&+2~ok %I 
+s- w $7 a-g1 . ) I (21) 

Here wP= ( 4rrIVoe2/m ) 1’2 is the plasma frequency of the 
beam. Note that for beams of gyrophase coherence, where 
g-,#O, a, generates a perturbed charge density of the 
same form as in the conventional FEL. The coupling of the 
perturbed density to a+ is proportional to the rate of gy- 
rophase coherence gel. The perturbed current density, 
however, is different from that in the FEL. We write the 
perturbed current h,+ as 

A,+ =pow 1,+ + wo,+p* * (22) 

In the FEL the second term is resonant and large, while 
the first term pe(v)i,+ is small. In the WFFEL, however, 
both terms are large, and in fact, the two largest terms in 
the expressions for p,,(v),,+ and (v)~,+P, usually cancel 
each other out. The dominant term in the current is then a 
higher-order term and is smaller than in the FEL. Never- 
theless, it is larger than in the CARM. 

We substitute the calculated expressions for j+, j-, 
and j, into ( 1 la) and ( 1 lb) and obtain three coupled al- 
gebraic equations for a,, a-, and a, with the unknown 
parameter (eigenvalue) k, These equations are 

--k&k;+ 

iv,ow (wv~c2 - k,) 
+ (w-kp~-Wyo)2 u&l ’ 

( -k:- (k,+2ko)‘+$)u- = --& (-‘;)%I;;;; u_go 

+ 
v2,C(kZ+2k~o--2/c2)u+g-2+ [w2- (kZ+2ko)2]u-go) 
T 

iv@(wvdc2-k,-2ko) 
+ (w-k~B-~/yo)2 ug-l 

(234 

(2%) 

(23~) 

4105 Phys. Fluids B, Vol. 4, No. 12, December 1992 Amnon Fruchtman 4105 

Downloaded 05 Feb 2004 to 132.77.4.129. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



The special physical interaction in the wiggler-free 
FEL comes from the coupling of the three waves: the right- 
hand polarized wave a+ (amplitude a,), the left-hand 
polarized slow wave a- (amplitude a-), and the longitu- 
dinal slow wave a, (amplitude a,). The coupling of the 
three waves results from the gyrophase coherence of the 
initial distribution function. The strength of the coupling of 
the right-hand polarized wave and the slow left-hand po- 
larized wave is measured by t.he magnitude of g,. The cou- 
pling between the right-hand polarized wave and the lon- 
gitudinal slow wave is measured by the magnitude of gi. In 
the CARM the initial distribution function is independent 
of the gyrophase (pP The coeffic.ients g, I and g,, are there- 
fore zero, and the coupling of the three waves vanishes. 
The CARM interaction is therefore different from the WF- 
FEL interaction. We will discuss the differences further in 
the following sections. 

In order to have nontrivial solutions to Eqs. (23a)- 
(23~) the determinant should be zero. Equating the deter- 
minant to zero, we obtain the dispersion relation, which is 
an equation for the eigenvalue 5. We refer to the equation 
resulting from equating the determinant of (23a)-( 23c) to 
zero as the full dispersion relation (FDR). 

IV. THE ROOTS OF THE DISPERSION RELATION 

fW0 
oszwo=(l~vdc), kzrkd=wo/c. (27) 

We assume that there is a significant Doppler upshift, and 
that the frequency is much above the cutoff frequency, 
k&s-ko,k,. Later we treat the case of grazing incidence, 
W;=W-. 

We turn first to the analysis of the CARM. When the 
beam is randomly gyrophased, 

8th) = 1, g+1=o=g*2, go= 1, (18) 

the equations for a+, a-, and a= decouple. From Eq. (23a) 
we obtain 

(~9 - kzuea ) 
(~-k~z&b’yo) 

Vi (w”/c” - k;) 
--i- (co-kzvd-f-L/yo)2 + (29) 

The first term on the right-hand side is a stabilizing term 
and the second term is destabilizing. Near the Doppler 
upshifted resonant frequency the dispersion relation be- 
comes 

( ) $ (A-g)=p$yo 
0 ( 

;+$ 
20 

We will now study the solutions of the dispersion re- 
lation and calculate the growth rates for some limiting 
cases, where a particular physical mechanism is dominant. 
To that end we apply various approximations to the FDR. 

In all cases, we focus on a parameter regime where 
( - ki - k~+o’/c”) is small, so that the wave is nearly a 
vacuum electromagnetic wave. We also concentrate on the 
case where the denominator (w- k,v,- a/y,) is small. 
We write 

, 

>: [--2Wcko) (A-f;) + (k&I’1 
A2 

(30) 

This is a cubic polynomial for A. The scaling of the growth 
rate of the CARM instability depends on the dominant 
term in the numerator of the destabilizing term. When 

k;>.J @f w; ” 
c c2yiJyo’ 

(31) $-k;-k;=-G(A-{+)(A+), 

where the two mismatch parameters g,, and A are 

(25) 

We look for cases when A is much smaller than 1. The 
spatial growth rate of the unstable modes is given by the 
negative imaginary part of k, (or of k,A) . The frequencies 
at which j, and c- vanish correspond, respectively, to the 
Doppler upshifted and Doppler downshifted cyclotron fre- 
quencies. These two resonant frequencies are 

~/yo~(v~c)[(G’yo)2-k~c2(1-v~c2)]’~2 
WA,= (l-&)/cz, . (26) 

We discuss mainly the case of small k,, so that the two 
frequencies are distinct. We are interested in the Doppler 
upshifted frequency and, therefore, 

The dispersion relation is approximated as 

A”(A-g)= 
io2u2 k”c Pfll 

4k”oc2yov~ko ’ 

and the maximum growth rate, for 5~0, is 

If3 
. 

(32j 

(33) 

On the other hand, if 

(34) 

the first term in the numerator of the destabilizing term is 
dominant, and when the second (stabilizing) term is small, 
the growth rate is 

(35) 
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Equations (33) and (35) therefore describe the growth 
rate of the instability when inequalities (3 1) and (34), 
respectively, are satisfied for the CARM interaction. We 
now turn to the cases where the gyrophase coherence of the 
electron beam plays a major role. 

To simplify the analysis of the FDR, we define 

p = vdc, (36a) 

(36b) 

(36~) 

(36d) 

kf (1-A) 
W-Tg p, * (36e) 

We first assume that 

q2,C2<A2. (37) 

In this case we approximate Eqs. (23b) and (23~) as 

T2 ic2s 
a- =g a+g-2, a,=z a+g-1 . 

The approximated dispersion relation is 

(38) 

2 

(A-E+wko+&-tiz 

(39) 

The terms responsible for the coupling of the three waves 
are clearly seen. The second term on the right-hand side 
(rhs) of this equation represents the strength of the cou- 
pling to the slow left-hand polarized wave, while the third 
term represents the coupling to the slow longitudinal wave. 
The first term on the rhs is responsible for the CARM 
interaction. When the beam is randomly gyrophased, and 
Eqs. (28) are satisfied, only the first term remains, and the 
interaction is the CARM interaction. When the beam is a 
double helical beam, 

g(+i)=4[S($i) +~($i-T)19 g*lEo9 gO=l=g*2 9 

(40) 

the electromagnetic wave is coupled to the left-hand polar- 
ized slow wave only. There is no coupling to the longitu- 
dinal slow wave. We discussed and analyzed such a case in 
Ref. 4. When the beam is helical 

g(4i) =s(4i)9 L?n= ls (41) 

the electromagnetic wave is coupled to both slow waves 
and the coupling to the longitudinal slow wave has to be 
considered as well. 

The approximated dispersion relation is a fifth-order 
polynomial for A. When the term responsible for the 
CARM interaction is small, the dispersion relation be- 
comes 

A4( A-6) =&‘U, 

where 
(42) 

u~g2g-2-2(1-P=)(~~/~~)glg-l. 

The maximum growth rate is 
(43) 

Im k,= -sinr+)ko(i q4U) 1’5 

=- sid$-f) [f$ (q+)4]“5[gtim2 

-2(q) (g31g-,]i’5. (4.4) 

We also require that the first term on the rhs of l$. (39) 
be small. This is satisfied, for kl small, if 

(45) 

Note that U is usually of order one. On the other hand, 
g2xA2 if 

(46a) 

Also, for c24A2, and if the coupling to the longitudinal 
wave is at least comparable to the coupling to the left-hand 
polarized wave, 

(46b) 

Here 2= ( 1 -flz) -‘. Thus if the density is low enough and 
satisfies inequalities (46), the coupling to both waves can 
be comparable. The dominant coupling, either to the left- 
hand polarized wave, or to the space-charge wave, depends 
on the relative magnitudes of the two terms in U. For a 
helical beam, when g&l= 1 =gf2, both terms in square 
brackets in Eq. (44) are usually important. Note also that 
the gyrophase contribution vanishes when U = 0. 

We turn now to a second case. If 

q2<A24C2, 

the fields are approximated as 
(47) 

a+, a== -isa+g-1 . 

(48) 
Both a- and a, are smaller than a+. When we substitute 
these expressions for a- and a, into Eq. (23a) we note that 
the contribution of a, is larger (because q2~A2). The dis- 
persion relation is approximated as 

Pz (A-{+-WI +2(1 +Dz,) g,g-, 
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The growth rate is maximal when 

or 

growth rate normalized to k. at grazing incidence for the 
CARM lYc and for the WFFEL Iw are 

r.,=0.87Fr’;3, lT,=0.82h2’5, (54) 

where 

It is interesting to note that this gain scales very similarly 
to the gain of an FEL in the strong-pump (Compton) 
regime, I ’ when k,, the wiggler wave number, is replaced 
by kp However, the condition A2<c2 (47), becomes 

P;&w- I 
cko;i2$+ 4( I+/%> * 

(51 

Note that this inequality is the reverse of inequality (46b). 
Inequality (5 1 ), in the case of the FEL, is typical of the 
operation in the collective Raman regime> contrary to op- 
eration in the strong-pump Compton regime. The source of 
the difference between the FEL and the wiggler-free FEL, 
in this respect, lies in the fact that both terms in the current 
in the wiggler-free FEL [Eq. (22)] are resonant. When 
inequality (51), or its equivalent for the FEL, is satisfied, 
the perturbed density pI [Eq. (21)] is not resonant. The 
gain in the FEL vanishes for g=O, and a different resonant 
frequency corresponds to the Raman regime. In the 
wiggler-free FEL, on the other hand, (v)t,+ is still reso- 
nant. The two largest terms in (v) i,+ and in p1 that cancel 
each other for low density, do not do so for high density 
since pI is small. The gain scales then as in the FEL in the 
strong-pump Compton regime. 

With the inequality q2<A2, the condition for the va- 
lidity of (49) is 

& 1 -&3’2 &tm- 1 

vTf?,C 1 +&) g1g-1’ck,,;2y;’ 4( 1+/3J ’ (521 

We note that it is very difficult to distinguish numerically 
between the two regimes, the high- and low-density re- 
gimes. 

In a recent gyro TWA experimentI that operated near 
grazing incidence [o+ = o- in (26)], the measured wave 
amplification was found to be larger than the amplification 
predicted by the theory.8 A suggestion was made’” that the 
enhanced amplification was due to the gyrophase coher- 
ence of the beam (the WFFEL mechanism). Let us exam- 
ine the operation near grazing inc.idence. In this case 

kl”= “/ko, o = jkoc. (531 

The coupling coefficient. to the space-charge wave in (23a) 
is proportional to (wuLo--kg’> which vanishes at grazing 
incidence. The vanishing coupling to the space-charge 
mode has been observed recently by Chen et al.,” who 
concluded that at grazing incidence there is no enhance- 
ment of the amplification due to the gyrophase coherence. 
The analysis in Ref. 17 did not take into account the cou- 
pling to the left-hand polarized wave. It is easily shown 
that this coupling does not vanish. However? the maximum 

(55) 

Since It<1 the CARM growth rate is larger, Therefore, 
indeed, at grazing incidence the WFFEL inberaction does 
not enhance the wave amplification. 

V. THERMAL SPREAD 

To zeroth order, in the presence of the uniform mag- 
netic field only, the quantities pn p,? 4, and E are constant. 
and keep their values of t=O. The time r. is z/v,, The 
integration over ri is easily performed if f is independent of 
tP Equations (5) become 

4m = 
i~a,(l)==--No 

C s %P, dPti 
0 

x s m dp,ivzii~ 1, *“f-j. 
-e-z j=o,+ 1 

(564 

(56b) 

Here 
x 

f= NO C .f,j@ti,Pzij e’“% 
nz-z 

(57j 

the symbols with the tilde satisfy the equations 

!!!f$Z= =f=: (a+ 3=:fii-)erl)[i( --co*;] 3;,,,, 
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d&*‘) 
-z-= 
d&i’) n ,1O’ 
-iiF=--- Yi Ei ’ 

Also, ?f” satisfy 

(58~) 

(58d) 

(58e) 

(58f) 

(5%) 

dqO’ 
-= -ev,p, exp 

dz q”’ =v,p$)‘. 

There are two cases where these equations are simplified. 
(i) No thermal spread in prP We then write 

fn(Pd*Pzi) =4n(Pti)S(Pzi-PZo), (59) 

and integrate on pZP Then, using the definition (17) we 
easily perform the z integration. We obtain a system of 
algebraic equations for a= (~+,a-,a,), which is a general- 
ization of Eqs. (23). These generalized equations are 

Aa=ua. (60) 

The tensor A is diagonal 

A ++=-kf-k&&c=, 

A--= -e- (k,+2k0)*+~=/c2, (61) 

A,=i. 

The elements of the tensor u are 
2 

*P 
s 

m 2Vti dpti ( w/Vzi- kz) 
B++=-;;z o Yi (w/U~f-k,-kO) 

qO(P*i), 

2 
wP w 2TP*i pfi (0~/c~-k:-2k&O) 

*+-=;;T s 
- dpti 7 

0 Yi 2p, (W/v,i- k,- ko)’ “(‘Ii)’ 

2 
wP o.+Z=i-g w 

s 

m 2rpti Pti 
- dpti - 

(w/c2 - k,/v,i) 
0 Yi pa (o/v,,-kz-ko)lql(Pti), 

_ (W/Vzi-kz-%) 
(ti/Vzi-k,-ko) 

+P~i[02/C2-(k,S2kO)‘] 
2p~(O/U~i-k~-ko)* 40(Pri) f 

u-+=u+-9 q-2=q2, 

u_,- iz w Jo* “~Ptii4Pti~ 

x ( W/C2 - kJV,- 2kJV,) 
(~/vzi-kz.-ko)2 q-1(pri)9 

2Tp, dpripri( kJwv,- I/C=) 
u 

2 
z+ = -0p yi2p~(w/v,-kk,-ko)* q-l(pfi)t 

CT,-= --Ii? I m 2nPtidPtiPtiL -(kz+2kO)/tivzi+ l/c’] 

p 0 Yi2PBCO/Vzi-k,-kO)2 

xql(Pti)9 

s 

m 
a,= io$ 

2Vti dp,i( l/v~i- l/c=) 

0 yi(O/Vzi-kz-ko)2 q&i)’ (62) 

Here yi= ( 1 +p~/m2c2+p$/m2c2) “’ and uzi=pJmyk 
These equations are reduced to Eqs. (23) if 

4nCPti) =S(Pti-P10)/2~Pti * (63) 

The influence of the thermal spread in the perpendicular 
momentum was studied by Freund et al. ” in connection to 
the aurora1 kilometric radiation. The equilibrium electron 
distribution function was chosen to be 

fO(PhPzb$i) = (7&) -’ exp [ - (Pti-Pm)*/&] 

Xexp[ -Qwdl --OS +i)/af16(pz 

-Pd. (64) 

That distribution function may also be written as 

fo= (7TClf)-1 '"p( -'pi+.~))S(P,-pfi) 

(65) 

Following the above analysis, the perturbed current is ob- 
tained by substituting 

qn(Pti)=(Taf)-‘exp[-(p~i+P~)/cr~]I,(2p,ipIo/a:) 
(66) 

for n =O, f 1, f 2. The expressions obtained by substituting 
Eqs. (66) into Eq. (62) are much simpler than those given 
in Ref. 11. Also, Eqs. (60)~( 62) are exact with no need to 
truncate an infinite series of coupled equations. 

(ii) The case in which 

fn(Pti,Pzi) ‘fO(Pti*Pzi)Sn,O * (67) 

The beam is warm but randomly gyrophased. This is the 
case of the CARM with a warm beam. The equations for 
a+, a-, and az are then decoupled. Writing 
a+(z) =a+ exp(ik3) in Eq. (23) we obtain the dispersion 
relation 
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L2 0.4 0.5 

C$)’ 

FIG. 1. The normalized growth rate (Im kL/k,) as a function of the 
normalized density (c$/‘~G) for various B1 (denoted on the curves). The 
beam is helical (g,= 1) and its energy is y= 5. 

cd= 
-k&k+. 

2 
wP o? 

=7 0 I 
dp,2VtiS_ 2[ ( o~~z~~,y,) 

v;( k; - co*/?) 

+2(ti-k~~~i-n/Y,)‘] fO(Pti9Pzi) * (68) 

Vi. NUMERICAL EXAMPLES 

In this section we present numerical calculations of the 
amplification of the wave due to the wiggler-free FEL 
mechanism. Shown in Fig. 1 is the normalized growth rate 
(Im k,/k,) as a function of the normalized density 
(wdck,)*, for various values of the perpendicular velocity 
p, The beam is helical (g,= 1) and its energy is y= 5. The 
growth rate shown is that of the most unstable mode at the 
frequency at which it is maximal. The growth rate was 
found by numerically solving the FDR [Eqs. (23)]. When 
@,=0.2 or 0.3, the roots of the approximated dispersion 
relation (39) are a good approximation. For smaller & the 
approximation is less good. The normalized resonant fre- 
quencies (w/c&,) are 13.9, 17.6, 23.0, 30.5, 38.5, and 45.6 
for &=0.3, 0.25, 0.2, 0.15, 0.1, and 0.05, respectively. 

As a first example let us exmaine the case in which the 
intensity of the magnetic field is 10 kG. The cyclotron 
wave number k. is about 1.2 cm-‘, and hardly varies for 
the different &‘s. The resonant wavelength varies from 3.8 
mm (&=0.3) to 115 pm (&=O.OS). The growth rate var- 
ies from 0.011 (&=O.OS) to 0.046 cm-’ (&=0.3) for the 
lower current density (100 A/cm’), and from 0.017 to 
0.105 cm m-l for the higher current density ( 1 kA/cm2). 

As a second example let us take the magnetic field to 
be 50 kG. The cyclotron wave number is now 6 cm-‘, and 
the reson‘ant wavelength varies from 760 i&=0.3) to 23 
pm (pt=0.05). The growth rate varies from 0.055 
(&=O.OS) to 0.23 cm-’ for the lower current density 2.5 
kA/cm2, and from 0.085 to 0.52 cm- ’ for the higher cur- 
rent density (25 kA/cm”) . 

Similar to the numerical calculations in our previous 
publications,‘” the present calculations demonstrate the 
large amplification of the wave in the linear regime. The 
novelty in the present paper is the development of the gen- 
eral single particle formalism. The formalism developed in 
this paper will be the basis of a future study of the inter- 
action in the nonlinear regime. 
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