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A general single-particle formalism is developed that is applicable for describing thermal and
nonlinear effects both in the wiggler-free free-electron laser (WFFEL) and in the

cyclotron autoresonance maser (CARM). The general formalism is used in the present paper
for a linear analysis. The WFFEL interaction is shown to result from the coupling of

the electromagnetic wave to two slow waves: a left-hand polarized wave and a longitudinal
wave. This coupling results from the spatial periodicity of the electron flow in the

WFFEL which follows the gyrophase coherence of the beam. The comparison between the
WFFEL and the CARM is extended to the case where the wave phase velocity is

different from the velocity of light in vacuum, and conditions are found for the gain in the
WFFEL to be larger. An exact dispersion relation is derived for the WFFEL which

employs an electron beam with thermal spread in the transverse velocity.

I. INTRODUCTION AND SUMMARY

In the wiggler-free free-electron laser (WFFEL)'™ a
spatially periodic flow of electrons progates along a uni-
form magnetic field and transfers energy to an electromag-
netic wave. The mechanism of the energy transfer relies
upon a coupling of the electromagnetic wave to slow waves
through the periodicity of the flow, similarly to the cou-
pling in the free-electron laser’ (FEL), where both the
flow and the external magnetic field are spatially periodic.
The spatial periodicity in the WFFEL follows the gy-
rophase coherence of the beam. The coupling to the slow
waves does not exist in the gyrotron® or in the cyclotron
autoresonance maser (CARM)"™ where the electron beam
is randomly gyrophased and the flow is not periodic. The
possible gain enhancement by the periodicity of the elec-
tron flow as a result of the gyrophase coherence of the
beam was addressed also in relation to other physical
systems.m‘12

In this paper we progress toward an understanding of
three-dimensional, thermal, and nonlinear effects. In pre-
vious papers we used fluid"* and kinetic®* pictures to de-
scribe the electron beam dynamics. Here we derive a gen-
eral single-particle model, which is applicable for
describing the nonlinear evolution of the electromagnetic
radiation, as well as the effects of thermal spread and finite
transverse system dimensions.

After laying out the general formalism in Sec. II, we
turn in Sec. III to a linear analysis of the interaction of a
cold beam and derive the full dispersion relation. In Sec.
IV we show that the physical mechanism responsible for
the WFFEL interaction relies upon coupling of the right-
hand polarized electromagnetic wave to two slow waves: a
left-hand polarized slow wave and a longitudinal slow
wave. The contribution of the two slow waves is usually
comparable. As in our previous paper* we reduce the gen-
eral dispersion relation to a fifth-order polynomial. At res-
onance four roots are nonreal, and correspondingly there
are two unstable growing modes. The growth rate of the
most unstable mode approximately is [Eq. (44)]
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Here @, is the beam plasma frequency, { is the nonrela-
tivistic cyclotron frequency, v, and v, are the perpendicular
and parallel components of the electron velocity, ¥ is the
relativistic factor (1—v?/c?) =2, and k, is the longitudinal
component of the wave vector. The Fourier coefficients in
the azimuthal gyrophase of the electron initial distribution
functions g., and g., couple the right-hand polarized
electromagnetic wave to a slow longitudinal wave and to a
slow left-hand polarized electromagnetic wave. The term
in the square brackets is usually of order one. The two
terms in these brackets express the contributions of the
couplings to the two slow waves. The relative roles of these
two slow waves can vary according to the relative magni-
tudes of these two terms.

The gain in the CARM, when the transverse wave
vector k; is not too small, is [Eq. (33)]
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where w is the wave frequency. When &, is small, the gain
in the CARM is approximately [Eq. (35)]
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We show that in some cases of practical interest the gain in
the WFFEL is significantly larger than the gain in the
CARM. We show, however, that at grazing incidence the
gyrophase coherence of the electron beam does not en-
hance the amplification.

When the density is high enough, and if the electron
transverse velocity is very small, the gain in the WFFEL
becomes [Eq. (50b)]
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The gain scales as in the FEL in the strong-pump regime
where ky,=0Q0/yv, is equivalent to k,, the wiggler wave
number. We discuss the reason for this similarity. We note,
however, that numerically it is usually difficult to distin-
guish between the two limits (48) and (54b).

In Sec. V we derive an exact dispersion relation for the
WFFEL with a thermal spread in the transverse velocity.
We also write the equations for the nonlinear analysis of an
initially cold electron beam. This forms the basis for a
future study of the crucial questions of the effects of ther-
mal spread and nonlinearity on the interaction. We empha-
size that generating the coherently gyrophased beam
needed for the WFFEL without an accompanying large
thermal spread has not yet been demonstrated.

In Sec. VI a numerical example is given.

1. A GENERAL NONLINEAR FORMALISM

We consider an electron beam which propagates along
the z direction in the presence of both time-dependent and
time-independent fields. At this stage we make the assump-
tion that the electrons move mainly in the z direction and
that their transverse excursion is small; therefore their
transverse coordinates are assumed constant during their
motion. Following Sprangle ez al.,'® we write the general
thermal distribution function f as

‘7(1‘1,2,1],{) = fdpi vzz’(pi) f dtif(tﬁrbpi)a[z

_g(ti’rlspbt) ]5[”7—1’(2‘31‘1&,’,1’) ]’ ( 1 )
where 1, is the time the particle passes through z=0, r, is
the transverse coordinate of the particle at ¢>¢, and p; is its
momentum at f=¢, The z coordinate of the particle is &
and its momentum is p. The distribution function of the
particles at z=0is f. The charge density g and the current
density J, associated with this distribution function, are

plrzt)=—e f dp; v(p;) f ‘ di; f(t,r),p))
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Here —e is the electron charge. The time 7 is the time it

takes for an electron to move from the entrance to the
point z,

Slt—t;i—T(tpr,pp2) 1. (3)

z dz'
T(t[vrj_’piaz) = J

0 Uz(tbp[yl'pz') )

(4)
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We also define the flow velocity (v} (r,2) =J/p. We now
make the assumption'® that both the waves and the cur-
rents are periodic in time with frequency o corresponding
to a temporal steady state. Multiplying the Maxwell equa-

tions by €, and integrating over 27/w, we obtain
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where a, B, j, and p are the wave electric field, the wave
magnetic field, the current density, and the charge density,
which are obtained by multiplying by exp{(iw¢) and by
averaging over a period 27/w. Also (v)(r)=j/p. Here
ar=a,Fia, B.=B;FiP, j.=]j,Fij, Using expressions
(2)-(4) for the charge and current densities, we obtain the
following expressions for j and p:
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Here v, and p, were assumed to be always positive. As
explained in Ref. 13 the periodicity of the currents allows
us to integrate on f; over a finite interval of length 27/w
only.

In order to calculate the expressions (6a) and (6b) for
J and p, we have to solve the single-particle equations of
motion for the particles momentum p and velocity v, at z
and average their contributions over #; and p, We now
specify the time-independent fields to be a uniform mag-
netic field By=B2,. The equations of motion are for slowly
changing variables, as used, for example, by Fliflet,®

Q Y
pxt+ip,=ip, exp[i(;; T+¢) , ()
i

where p, and ¢ are the slowly varying amplitude and phase.
The nonrelativistic cyclotron frequency is Q=eBy/mc
where m is the electron mass. The single-particle equations

of motion are®
(5744
if—r , (8a
Vi '
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d—i=Re(S€)=Re(—ev-E), (8d)

v=c?p/e, (8e)

where ¢ is the total electron energy, y= (1+p-p/m2c?)"?,
and F= —e[E+ (v/c) XB]. We now assume that the fun-
damental time harmonic is dominant and neglect the
higher harmonics in the equations of motion. For nota-
tional convenience we omitted the subscript 1 from the
wave-field coefficients. The expressions for the sources be-
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Using (7), we write the current density as
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and the charge density as
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Maxwell’s equations (5) and the equations of motion (8)
together with the definitions (10) fully describe the elec-
tron beam-wave interaction in very general cases. They
comprise the basis for a future study of nonlinear pro-
cesses, the influence of thermal spread, and three-
dimensional effects.

In Egs. (10) p, p, ¢, and v, are calculated at a time
t=t;+7, which is the time the particle reaches the coordi-
nate z along its propagation. We assume that the particle
velocity v, is always positive and therefore, for each parti-
cle, 7 is a single-valued function of z. The equations of
motion (8) and the Maxwell equations (5) also describe
the CARM interaction. Contrary to what is usually done
in the CARM analysis we have retained the left-hand po-
larized components & _ and B_ and the longitudinal field
a,. These fields will shortly be shown to play a major role
in the WFFEL interaction.

Having presented the general formalism, we derive, in
the next section, the dispersion relation of the linearized
equations.

(10b)

lil. DERIVATION OF THE FULL DISPERSION
RELATION OF THE LINEARIZED EQUATIONS

We first reduce the problem to a one-dimensional (1-
D) problem by assuming that the transverse dependence of
the wave fields and of the beam dynamics is weak. On the
left-hand side of Eq. (11a) the operator V2 becomes —kK.
Retaining this term, we are able to study the CARM in-
teraction when the phase velocity is different from ¢. More-
over, in our simplified model, this term is the only
transverse-dependent term retained. We neglect the second
term on the left-hand side of Eq. (5a) since this term
represents the transverse derivative of V-, and V-« is pro-
portional to the beam density, which is assumed to be low.
Similarly, we neglect the transverse derivatives in Egs.
(5b) and (5d). The 1-D Maxwell equations are now

, & o dmicr

(_kl+d?+?)ai(z)=_7jd:(2), (11a)

L 47

i a,(z)= p J(2), (11b)

da,

e =47p, (11¢)

and

d =+ q=da:1:

;3 =T = (11d)
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The transverse dependence appears in our simplified anal-
ysis only in the term k2 in Eq. (11a).

The electron distribution function f is assumed to be
independent of r;. The 1-D Maxwell equations enable us to
study the nonlinear wave—beam interaction with an arbi-
trary electron distribution function at z=0. This can be
done by solving the full nonlinear single-particle equations,
as was done, for example, in Ref. 13 for the FEL, or by
employing a quasilinear approach within a fluid picture."‘
We postpone the nonlinear analysis for the future and turn
to a linear analysis.

The current and charge densities, linearized to first
order in the wave fields’ amplitudes, are

few 21?/md o0 dp.2
jo1=FX— L; ;
Jx T fo ’fo P 2Ty

a0 2
xf dps fo Ay v (1oD0)

P Y B
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and
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To zeroth order, in the presence of the uniform magnetic
field only, the quantities p,, p,, ¢, and € are constant and
have the same values they had at z=0. The time 1 is z/v,;
Despite the approximations we could still allow a general
distribution function f and study thermal spread effects.
Indeed, we address thermal spread effects in Sec. V. Here
we limit ourselves to an initial distribution function which
is cold and steady (does not depend on ;). The electron
distribution function is

8(pi—pw)
wPuPz0®i) = o—“—‘_" < Pzi—P0)8\9i)-
f ¢) =N 8( (). (13)
2apy
As in our kinetic analysis,> we write
1 had g, .
gd) =5 X g™, (14)
n=— o

and g,=g_, are real, so that g(¢,) is real. The zeroth-
order current and charge densities are
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where vo=po/myq, vo=1+ (ply+pk)/m*c*, and
ko=Q/(vov0)- (16)

We look for a solution for the fields a(z) and B(z) of the
form

@, (z)=a, exp(ikz), (17a)
o_(2)=a_ explilk,+2ky)z], (17b)
a,(z)=a;expli(k,+ky)z], (17¢)
B (2)=b, exp(ikz), (17d)
B_(2)=b_ exp[i(k,+2ko)z]. (17¢)

We substitute these expressions for the fields into the
sources in the single-particle equations (8). The time ¢ is
t=t;+T=t+2/v, The linearized sources in the single-
particle equations are, therefore,

ie Uy .
Sa=—7 (a+—z - b+)e"/’i

U,; .
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1

€ Vs i$;
S¢,1=2—p— a.i_""‘l“;b,i_ e

Uyi I P ¢ -
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Sa=— (—2— (a+e’¢i—~a_e"’4’i) +vz,az)ee"", (18d)
where
@
Y= (kz—i—k ———)z-(oti. (19)
Uz

Expressing the linearized time  derivative as
d/dt=v,{(d/dz), we solve the linearized single-particle
equations of motion and find that

e (v , :
-~ (7" (a+e'¢i—a_e"d"')'il’zﬂz)]f

€;=Re (20a)
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o' Uy " We now perform the integrations over ¢, p,. p., and ¢,
Pn=Re _W ay—i-= by e in Eqgs. (12), using expressions (20) for the linearized vari-
ables, and the form (13) of the initial distribution function.
3 (a_ +i ECE b_)e"i ¢i] ]’ (20b) The perturbed charge density is
. (k4 ko)
. f = —
8= —Re (a+_,. e ,,+)e.»¢, O T arrl (0= ko= 0/10) 2= (@ 7o) (1= /)]
; c
Pr Vg (ke vy
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to (7’ <a+e"”f—a_e-'¢f>—ivzaz)], (20c) 2 @ ¢) @b
! Here w,=(4mNoe’/m)'* is the plasma frequency of the
o beam. Note that for beams of gyrophase coherence, where
iee'™ (v, . Y _170, a_ generates a perturbed charge density of th
= —Re|— [ (b, % by E-17Y a8 p 8 Sity of the
Pz ¢ ¥ (2c( +e%+b_e™®) a’) ’ (20d) same form as in the conventional FEL. The coupling of the
perturbed density to a is proportional to the rate of gy-
. rophase coherence g_,. The perturbed current density,
vy = P iy (20e)  however, is different from that in the FEL. We write the
my; €; perturbed current j, | as
and
fz dz’ v, (2") I+ =pokV) 1,4+ + Vo 1p; - (22)
Tj=— . S—
! 0 vy In the FEL the second term is resonant and large, while

the first term po(v); . is small. In the WFFEL, however,

I, 4
— Re (tee Vyi ( b, — U—Zia+ ) o both terms are large, and in fact, the two largest terms in
Pax |2¢ c the expressions for po(v); ; and (v),_ p; usually cancel

. 2 each other out. The dominant term in the current is then a

+ ( ib_+-=2 a_)e—i¢,~ _,'( 1 _izf)az ), (20f) higher-order term and is smaller than in the FEL. Never-
¢ ¢ theless, it is larger than in the CARM.

where We substitute the calculated expressions for j,, j_,

and j, into (11a) and (11b) and obtain three coupled al-

y=kat sz,-_w. (20g) gebraic equations for @, a_, and a,, with the unknown
YoV parameter (eigenvalue) k,. These equations are
}
2R w? _ co,z, (w0—k,) vfo[(kf*a)z/cz)a+g0+(a)z/cz——kf—2kzko)a_g2]
A a+—;2% (0—k0—0/70) -8t 2(0—kvo—Q/vo)
vw(wve/ct—k,) .
(0—kpo—0/70)" 1)’ (232)
w? o’ (0—kw,—20/v)
2 ) 2 20 Yo
( ke — (k,-+2kg) +'c'f)a_— ;z%( (0—kpg—O/yg) 280
+vfo{(k§+2kzko—w2/02)a+g_z+[wz—(kz+2ko)2]a_go}
2(w—kwo—0/Y0)*
o (vg/ct—k,—2kq) ; ) -
(w_szzO_Q/YO)z L1} ( )
. ? vo (ke vo vo [ (kt2ko)e vg (Vo
m"_mm(co—kzuzo—ﬂ/yo)2 2e\lw e a+g_1+2c - @ +T a-&—t T2 )90y (23¢)
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The special physical interaction in the wiggler-free
FEL comes from the coupling of the three waves: the right-
hand polarized wave a, (amplitude a ), the left-hand
polarized slow wave a_ (amplitude ¢_), and the longitu-
dinal slow wave a, (amplitude a,). The coupling of the
three waves results from the gyrophase coherence of the
initial distribution function. The strength of the coupling of
the right-hand polarized wave and the slow left-hand po-
larized wave is measured by the magnitude of g,. The cou-
pling between the right-hand polarized wave and the lon-
gitudinal slow wave is measured by the magnitude of g;. In
the CARM the initial distribution function is independent
of the gyrophase ¢; The coefficients g, and g, are there-
fore zero, and the coupling of the three waves vanishes.
The CARM interaction is therefore different from the WF-
FEL interaction. We will discuss the differences further in
the following sections.

In order to have nontrivial solutions to Eqs. (23a)-
(23c¢) the determinant should be zero. Equating the deter-
minant to zero, we obtain the dispersion relation, which is
an equation for the eigenvalue k,. We refer to the equation
resulting from equating the determinant of {23a)~(23c) to
zero as the full dispersion relation (FDR).

IV. THE ROOTS OF THE DISPERSION RELATION

We will now study the solutions of the dispersion re-
lation and calculate the growth rates for some limiting
cases, where a particular physical mechanism is dominant.
To that end we apply various approximations to the FDR.

In all cases, we focus on a parameter regime where
(—k*—k2+w*/c*) is small, so that the wave is nearly a
vacuum electromagnetic wave. We also concentrate on the
case where the denominator (w—kuy—Q/Y,) is small.
We write

ol ) 5
?—k;—klv=—~k6(A—§+)(A—§_), (24)
where the two mismatch parameters £, and A are
1 o [o? )\
o *Tko [ko_”zo (?_kl) }’
(25)

L PR
zk—()( 2 0*—020).

We look for cases when A is much smaller than 1. The
spatial growth rate of the unstable modes is given by the
negative imaginary part of k, (or of k;A). The frequencies
at which £ and & _ vanish correspond, respectively, to the
Doppler upshifted and Doppler downshifted cyclotron fre-
quencies. These two resonant frequencies are

Q/ 0% (0;0/¢) [ (Q/79) 2~ ki (1 — v}/ 11?
(1—viy/c?)
We discuss mainly the case of small k), so that the two

frequencies are distinct. We are interested in the Doppler
upshifted frequency and, therefore,

- (26)

@y =
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Q7
(1—-vy/c)’

We assume that there is a significant Doppler upshift, and
that the frequency is much above the cutoff frequency,
ko>kok;. Later we treat the case of grazing incidence,
O, =0_.

We turn first to the analysis of the CARM. When the
beam is randomly gyrophased,

g(¢z)=19 g:i:1=0=gt2’ go=1, (28)

the equations for a_, a_, and a, decouple. From Eq. (23a)
we obtain

W=Oy= k,=ky=wy/c. (27)

@

2 2 )
_kf k2+%- Tp_( {o—k,p4)
c

vk (a)‘/cz—kﬁ)
T2 (o— Q/70)?
The first term on the right-hand side is a stabilizing term
and the second term is destabilizing. Near the Doppler

upshifted resonant frequency the dispersion relation be-
comes

P (29)

20\ o} 1er0

y [ —2(w/cky) (A—E) + (k/ko>2])

A2
(30)
This is a cubic polynomial for A. The scaling of the growth

rate of the CARM instability depends on the dominant

term in the numerator of the destabilizing term. When
2 2 2
W ©, Ug
k _L> 33 P 5
Yo U

20} ( Q )3 v\t e
C?’o Yol0 (Uzo) o

The dispersion relation is approximated as

(31)

vhiic
_,,___.1__
dkgetygrioky
and the maximum growth rate, for £=0, is

mzvz k2 173
Im k, ——«\ ( ) .

Yol ,0(’_)

A A-§) = (32)

(33)

On the other hand, if

a)cov,o

k1<‘2'2

Fra (34)

the first term in the numerator of the destabilizing term is
dominant, and when the second (stabilizing) term is small,
the growth rate is

W, Vg

Imk,=—

(35)
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Equations (33) and (35) therefore describe the growth
rate of the instability when inequalities (31) and (34),
respectively, are satisfied for the CARM interaction. We
now turn to the cases where the gyrophase coherence of the
electron beam plays a major role.

To simplify the analysis of the FDR, we define

B=vy/c, (36a)
o B
2 PP
E—P— , 36b
K 2¢ oYoEf (365
2 2
, @, (1-B;)
= (36¢)
6 02%0?'0 Ez
B
Eo——— 36
S+ (36d)
K (1-B,)
Ll)=2k0 Tz— . (36e)
We first assume that
%L1 <A (37)
In this case we approximate Eqgs. (23b) and (23c) as
,),’2 ié'ZS
A_=5730482 G=,7d.8 ;. (38)
The approximated dispersion relation is
7
WA= =P (A= 4w+ 378 a0
& B
_mmg—lgl)~ (39)

The terms responsible for the coupling of the three waves
are clearly seen. The second term on the right-hand side
(rhs) of this equation represents the strength of the cou-
pling to the slow left-hand polarized wave, while the third
term represents the coupling to the slow longitudinal wave.
The first term on the rhs is responsible for the CARM
interaction. When the beam is randomly gyrophased, and
Eqgs. (28) are satisfied, only the first term remains, and the
interaction is the CARM interaction. When the beam is a
double helical beam,

8($)=3[6(8) +6(¢;—m)], £+1=0, go=1=gu.,,
(40)

the electromagnetic wave is coupled to the left-hand polar-
ized slow wave only. There is no coupling to the longitu-
dinal slow wave. We discussed and analyzed such a case in
Ref. 4. When the beam is helical

g(d,) =56(4),

the electromagnetic wave is coupled to both slow waves
and the coupling to the longitudinal slow wave has to be
considered as well.

&.=1, (41)
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The approximated dispersion relation is a fifth-order
polynomial for A. When the term responsible for the
CARM interaction is small, the dispersion relation be-
comes

AYA—-§)=m"U, (42)
where
U=gg_,—2(1-8,)(B/BDgig_ . (43)
The maximum growth rate is
2T 1 1/5
TR buldl 4
Im k,= sm( 5 )ko(zn U)
sin(27/5) [Q (op\*/
T2, (_c—) } [gzg‘z
v,\ (v 1/5
—2(1—?) (—f)glgq (44)
vt

We also require that the first term on the rhs of Eq. (39)
be small. This is satisfied, for k; small, if
0 o
27 P2
v ?’o> 2 B
Note that U is usually of order one. On the other hand,
n <A if
20)1363 i
cszYO_ﬁzU2< ‘
Also, for £2<A?, and if the coupling to the longitudinal

wave is at least comparable to the coupling to the left-hand
polarized wave,

(45)

(46a)

@, <333381g—1
ckoyo v, 4(1+B,)

Here y2=(1—p)~". Thus if the density is low enough and
satisfies inequalities (46), the coupling to both waves can
be comparable. The dominant coupling, either to the left-
hand polarized wave, or to the space-charge wave, depends
on the relative magnitudes of the two terms in U. For a
helical beam, when g.,=1=g.,, both terms in square
brackets in Eq. (44) are usually important. Note also that
the gyrophase contribution vanishes when U=0.
We turn now to a second case. If

(46b)

7 <A<g, (47)
the fields are approximated as
_T & .
a_—m g_2+2(1+.32) a,, a=—isa,g_,.
(48)

Both a_ and a, are smaller than a_. When we substitute
these expressions for a_ and a, into Eq. (23a) we note that
the contribution of a, is larger (because 772<A2). The dis-
persion relation is approximated as

B,
W= (g0 giss s ). 9)
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The growth rate is maximal when

2 1/3
1B.
!Al=("—_"‘2(l+ﬁz)glg_l) ) (50a)
or
V3 [ 03818 ko 3
im b= = (18 18)) o)

1t is interesting to note that this gain scales very similarly
to the gain of an FEL in the strong-pump (Compton)
regime,’> when k,, the wiggler wave number, is replaced
by kg However, the condition A2<g3 (47), becomes

@, }ﬁ?ﬁgglgq
ckovy s 4(1+B2)

Note that this inequality is the reverse of inequality (46b).
Inequality (51), in the case of the FEL, is typical of the
operation in the collective Raman regime, contrary to op-
eration in the strong-pump Compton regime. The source of
the difference between the FEL and the wiggler-free FEL,
in this respect, lies in the fact that both terms in the current
in the wiggler-free FEL [Eq. (22)] are resonant. When
inequality (51), or its equivalent for the FEL, is satisfied,
the perturbed density p, [Eq. {21)] is not resonant. The
gain in the FEL vanishes for £=0, and a different resonant
frequency corresponds to the Raman regime. In the
wiggler-free FEL, on the other hand, (v}, , is still reso-
nant. The two largest terms in (v}, , and in p, that cancel
each other for low density, do not do so for high density
since p is small. The gain scales then as in the FEL in the
strong-pump Compton regime.

With the inequality 11°<A2, the condition for the va-
lidity of (49) is

Bi(1-B2)*? ), }Bzﬁgglg—l
VIB(1+B,) 8%~k P 4(11B,)

(51)

(52)

We note that it is very difficult to distinguish numerically
between the two regimes, the high- and low-density re-
gimes.

In a recent gyro TWA experiment'® that operated near
grazing incidence [0, =w_ in (26)], the measured wave
amplification was found to be larger than the amplification
predicted by the theory.® A suggestion was made'® that the
enhanced amplification was due to the gyrophase coher-
ence of the beam (the WFFEL mechanism). Let us exam-
ine the operation near grazing incidence. In this case

ki=vky, o=k (53)

The coupling coeflicient to the space-charge wave in (23a)
is proportional to (wv,,—k,c?) which vanishes at grazing
incidence. The vanishing coupling to the space-charge
mode has been observed recently by Chen et al.,'” who
concluded that at grazing incidence there is no enhance-
ment of the amplification due to the gyrophase coherence.
The analysis in Ref. 17 did not take into account the cou-
pling to the left-hand polarized wave. It is easily shown
that this coupling does not vanish. However, the maximum
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growth rate normalized to k; at grazing incidence for the
CARM T, and for the WFFEL [, are

[.=0.874'3, T,=0.8245, (54)

where

———fjw‘z’u‘z‘) 22 (55)
1= ) - .

4c7yovoko K

Since <1 the CARM growth rate is larger. Therefore,
indeed, at grazing incidence the WFFEL interaction does
not enhance the wave amplification.

V. THERMAL SPREAD

To zeroth order, in the presence of the uniform mag-
netic field only, the quantities p, p,, ¢, and € are constant
and keep their values of z=0. The time 7, is z/v,. The
integration over ¢; is easily performed if f is independent of
t;. Equations (5) become

22,

Bt oyt D), )
TRTGET R )0E

47;' X x p :
= —eNy f 2mpy dPu’J‘ dpy vy -
< 0 -2 P

£

ﬂ) z ] [ﬁ}i” Py
2 j:(),‘:i:l

Xexplil o—— —
p[( Pi Pz

/.
i

' e e
—i{(?—w)?i/)%-ﬂ”}fl-j}, (56a)
I
2 & o
(— l+E§+?)a(z)
w4 @ = i
=———0eN, ( 2mp,; dpy dp.; Uzi‘“v’tf
c Jo —_ Pzi
. [( +n‘> z] . {ﬁ?f’" B
X o+ — ——
S Yi] Yz j:,{)-,‘i] Pv Pz
(2 =) 4 FD ;
+1 a:‘}'@ Ty 'f‘(,bl fwl_j, (56b)
i
w0 4me =
z;az(z)ﬁ——;NoJ.o 2ap,dpy
< [7 dpavio = #0s. (56¢)
—w j=0,%1
Here
sz() Z kfn(plispzi)eimﬁia (57)
A= — o
the symbols with the tilde satisfy the equations
dpitv ie vy O z
= F— —_ f —wEt— | —
& 3 (Chb¢ p Bi)exp[z( @ i) on s
58a)
=0, (58b)
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~(1)
=F——————¢ 58c)
dz Di dz Yi€; ! (
d¢(0) Q e"(IO) ssd
&= e (38d)
dﬁ,(,l*” evy o\ z
= | —ox—] —
e 5z P+ exp[z( ) Y’) o (58e)
dﬁ(z?) iwz
A =—ea,exp(—v;), (58f)
a1 .
P AT (58g)
Also, & satisfy
Jé*” :Ftev,, :i:Q z
dz 2 aiexp[ ( —® 7’1) Uzl
dao) iwz

- = — "(0) ~(0)
dz —ev,Qa, exp( - Vyi )’ Uz,
There are two cases where these equations are simplified.
(i) No thermal spread in p,. We then write

SnPiP2) =0, (p)8(P2i—P o), (59)

and integrate on p,. Then, using the definition (17) we
easily perform the z integration. We obtain a system of
algebraic equations for a=(a,a_,a,), which is a general-
ization of Eqs. (23). These generalized equations are

Aa=oa. (60)
The tensor A is diagonal
Ay p=—k—k+a?/d,
A__=—k— (k+2ko) + 0/, (61)
A=l
The elements of the tensor o are
277'Pn dptt (w/vzi_kz)
Te+=a f (0/v,—k;— ko)
P (k2 w*/c?)
+j— (Cl)/Uz, k _k )2)‘10(17:1),
o f 2mpy P (@i 2k o
O-+—__c_f 0 71 ptl?_zo (C()/Uz, k k Y2 q?. ptl ’
CO; * 27rpti pt! ((L)/C —k /Uzt)
_I_wa- ¥ p (C!)/Uz, k k ) ql(Pn),
21Tp,, (/v,;—k,—2ky)
__T f Pu\ — (w/vzi—'kz_ko)

Pfi[wz/cz—(kz-i—Zko)Z] (Pa)
zpzo(w/vzi—kz..—.ko)z qo\Pyi)»
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_ J‘ 2'”'Pu dPn Pu
= —?‘ "

(/¢ —k,/v,;—2ko/v,))
(CO/Uzi—kz“l‘fo)2

q_1(ps)s

2 (= 27py; dpy; Pk 00— 1/6'2)
Te+ =% L Y2D0(0/ 01—k, — ko)’ a-1(pa),
2 f°° 2mpy; Apu pul — (k+2ko) /v, 1/¢]
== 7% ), Y20/ vy—k,— ko)’
qu (pti)’

2mp,; dp(1/v5—1/c?)
vl o/v—k,—k )2 90(py)-

0p=iw} f (62)
0

Here y;=(1+p/m*c®+pl/m*c®)'? and vy=p,/my;

These equations are reduced to Egs. (23) if

9, (Ps) =8(pyi—pw)/2mpy; . (63)

The influence of the thermal spread in the perpendicular
momentum was studied by Freund et al.!! in connection to
the auroral kilometric radiation. The equilibrium electron
distribution function was chosen to be

FolPupadd) = (ma?) ~! exp[ — (py—pr)*/a?]

X exp[ —2pp(1—cos ¢;)/a}18(p,

—P:0)- (64)
That distribution function may also be written as
(Potp)
So=(ma})~! CXP( _La2_)6(Pzi_PzO)
L
y Z I ( ptp,o) o (65)
n=—oo

Following the above analysis, the perturbed current is ob-
tained by substituting

Lexpl — (02 4p%) /0211, (2ppo/a?)
(66)

4n(py) = (mal)~

for n=0,=1,=2. The expressions obtained by substituting
Eqgs. (66) into Eq. (62) are much simpler than those given
in Ref. 11. Also, Egs. (60)—(62) are exact with no need to
truncate an infinite series of coupled equations.

(ii) The case in which

Sn(Dib2) =Fo(PioP2) O - (67)

The beam is warm but randomly gyrophased. This is the
case of the CARM with a warm beam. The equations for
a,, a_, and a, are then decoupled. Writing
a_(z)=a, exp(ikz) in Eq. (23) we obtain the dispersion
relation
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FIG. 1. The normalized growth rate (Im k,/k;) as a function of the
normalized density (m},/czk%) for various f3, {(denoted on the curves). The
beam is helical (g,=1) and its energy is y=>5.
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4

2(Ci?_kzvzi (68)

Vi. NUMERICAL EXAMPLES

In this section we present numerical calculations of the
amplification of the wave due to the wiggler-free FEL
mechanism. Shown in Fig. 1 is the normalized growth rate
(Im k,/ky;) as a function of the normalized density
(cop/cko)z, for various values of the perpendicular velocity
B The beam is helical (g,=1) and its energy is y=35. The
growth rate shown is that of the most unstable mode at the
frequency at which it is maximal. The growth rate was
found by numerically solving the FDR [Egs. (23)]. When
B,=0.2 or 0.3, the roots of the approximated dispersion
relation (39) are a good approximation. For smaller 3, the
approximation is less good. The normalized resonant fre-
quencies {w/cky) are 13.9, 17.6, 23.0, 30.5, 38.5, and 45.6
for 3,=0.3, 0.25, 0.2, 0.15, 0.1, and 0.05, respectively.
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As a first example let us exmaine the case in which the
intensity of the magnetic field is 10 kG. The cyclotron
wave number k&, is about 1.2 cm ™', and hardly varies for
the different 3;’s. The resonant wavelength varies from 3.8
mm ($3,=0.3) to 115 um (3,=0.05). The growth rate var-
ies from 0.011 (3,=0.05) to 0.046 cm™! (B,=0.3) for the
lower current density (100 A/cm?), and from 0.017 to
0.105 cm ! for the higher current density (1 kA/cm?).

As a second example let us take the magnetic field to
be 50 kG. The cyclotron wave number is now 6 cm™!, and
the resonant wavelength varies from 760 (3,=0.3) to 23
pm  (B,=0.05). The growth rate varies from 0.055
(B,=0.05) to 0.23 cm™! for the lower current density 2.5
kA/cm?, and from 0.085 to 0.52 cm ™! for the higher cur-
rent density (25 kA/cm?).

Similar to the numerical calculations in our previous
publications,'™ the present calculations demonstrate the
large amplification of the wave in the linear regime. The
novelty in the present paper is the development of the gen-
eral single particle formalism. The formalism developed in
this paper will be the basis of a future study of the inter-
action in the nonlinear regime.
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